Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Microbiol ; 14: 1113697, 2023.
Article in English | MEDLINE | ID: covidwho-2312708

ABSTRACT

The positive-sense single-stranded (ss) RNA viruses of the Betacoronavirus (beta-CoV) genus can spillover from mammals to humans and are an ongoing threat to global health and commerce, as demonstrated by the current zoonotic pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current anti-viral strategies focus on vaccination or targeting key viral proteins with antibodies and drugs. However, the ongoing evolution of new variants that evade vaccination or may become drug-resistant is a major challenge. Thus, antiviral compounds that circumvent these obstacles are needed. Here we describe an innovative antiviral modality based on in silico designed fully synthetic mRNA that is replication incompetent in uninfected cells (termed herein PSCT: parasitic anti-SARS-CoV-2 transcript). The PSCT sequence was engineered to include key untranslated cis-acting regulatory RNA elements of the SARS-CoV-2 genome, so as to effectively compete for replication and packaging with the standard viral genome. Using the Vero E6 cell-culture based SARS-CoV-2 infection model, we determined that the intracellular delivery of liposome-encapsulated PSCT at 1 hour post infection significantly reduced intercellular SARS-CoV-2 replication and release into the extracellular milieu as compared to mock treatment. In summary, our findings are a proof-of-concept for the therapeutic feasibility of in silico designed mRNA compounds formulated to hinder the replication and packaging of ssRNA viruses sharing a comparable genomic-structure with beta-CoVs.

2.
J Clin Virol ; 162: 105425, 2023 05.
Article in English | MEDLINE | ID: covidwho-2259565

ABSTRACT

BACKGROUND: Outbreaks of enteroviral meningitis occur periodically and may lead to hospitalization and severe disease. OBJECTIVE: To analyze and describe the meningitis outbreak in patients hospitalized in Israel in 2021-2022, during the COVID-19 pandemic. RESULTS: In December 2021, before the emergence of the SARS-CoV-2 omicron variant, an off-season increase in enterovirus (EV) infections was observed among patients hospitalized with meningitis. In January 2022, enterovirus cases decreased by 66% in parallel with the peak of the Omicron wave, and then increased rapidly by 78% in March (compared with February) after a decline in Omicron cases. Sequencing of the enterovirus-positive samples showed a dominance of echovirus 6 (E-6) (29%) before and after the Omicron wave. Phylogenetic analysis found that all 29 samples were very similar and all clustered in the E-6 C1 subtype. The main E-6 symptoms observed were fever and headache, along with vomiting and neck stiffness. The median patient age was 25 years, with a broad range (0-60 years). CONCLUSION: An upsurge in enterovirus cases was observed after the decline of the SARS-CoV-2 omicron wave. The dominant subtype was E-6, which was present prior to the emergence of the omicron variant, but increased rapidly only after the omicron wave decline. We hypothesize that the omicron wave delayed the rise in E-6-associated meningitis.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Meningitis, Viral , Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Echovirus 6, Human , Enterovirus B, Human , Phylogeny , Israel/epidemiology , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Meningitis, Viral/epidemiology
3.
Int J Infect Dis ; 122: 733-740, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1983198

ABSTRACT

OBJECTIVES: Ivermectin, an antiparasitic agent, also has antiviral properties. In this study, we aimed to assess whether ivermectin has anti-SARS-CoV-2 activity. METHODS: In this double-blinded trial, we compared patients receiving ivermectin for 3 days versus placebo in nonhospitalized adult patients with COVID-19. A reverse transcriptase-polymerase chain reaction from a nasopharyngeal swab was obtained at recruitment and every 2 days for at least 6 days. The primary endpoint was a reduction of viral load on the sixth day as reflected by cycle threshold level >30 (noninfectious level). The primary outcome was supported by the determination of viral-culture viability. RESULTS: Of 867 patients screened, 89 were ultimately evaluated per-protocol (47 ivermectin and 42 placeboes). On day 6, the odds ratio (OR) was 2.62 (95% confidence interval [CI]: 1.09-6.31) in the ivermectin arm, reaching the endpoint. In a multivariable logistic regression model, the odds of a negative test on day 6 were 2.28 times higher in the ivermectin group but reached significance only on day 8 (OR 3.70; 95% CI: 1.19-11.49, P = 0.02). Culture viability on days 2 to 6 was positive in 13.0% (3/23) of ivermectin samples versus 48.2% (14/29) in the placebo group (P = 0.008). CONCLUSION: There were lower viral loads and less viable cultures in the ivermectin group, which shows its anti-SARS-CoV-2 activity. It could reduce transmission in these patients and encourage further studies with this drug.


Subject(s)
COVID-19 Drug Treatment , Adult , Double-Blind Method , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use , SARS-CoV-2 , Treatment Outcome , Viral Load
4.
Viruses ; 14(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1884382

ABSTRACT

In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Israel/epidemiology , SARS-CoV-2/genetics , Wastewater
5.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875804

ABSTRACT

Enterovirus D68 (EVD68) was recently identified as an important cause of respiratory illness and acute flaccid myelitis (AFM), mostly in children. Here, we examined 472 pediatric patients diagnosed with severe respiratory illness and screened for EVD68 between April and October 2021. In parallel, samples collected from a wastewater treatment plant (WWTP) covering the residential area of the hospitalized patients were also tested for EVD68. Of the 472 clinical samples evaluated, 33 (7%) patients were positive for EVD68 RNA. All wastewater samples were positive for EVD68, with varying viral genome copy loads. Calculated EVD68 genome copies increased from the end of May until July 2021 and dramatically decreased at the beginning of August. A similar trend was observed in both clinical and wastewater samples during the period tested. Sequence analysis of EVD68-positive samples indicated that all samples originated from the same branch of subclade B3. This study is the first to use wastewater-based epidemiology (WBE) to monitor EVD68 dynamics by quantitative detection and shows a clear correlation with clinically diagnosed cases. These findings highlight the potential of WBE as an important tool for continuous surveillance of EVD68 and other enteroviruses.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Child , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Israel/epidemiology , Wastewater
6.
Animals (Basel) ; 12(8)2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1798911

ABSTRACT

The relationship between men and horses has significantly evolved over the last century [...].

7.
Microbiol Spectr ; 10(2): e0217621, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1741582

ABSTRACT

In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8119del assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health. IMPORTANCE The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Whole Genome Sequencing
8.
Clin Microbiol Infect ; 28(6): 859-864, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1693758

ABSTRACT

OBJECTIVES: Despite the success in developing COVID-19 vaccines, containment of the disease is obstructed worldwide by vaccine production bottlenecks, logistics hurdles, vaccine refusal, transmission through unvaccinated children, and the appearance of new viral variants. This underscores the need for effective strategies for identifying carriers/patients, which was the main aim of this study. METHODS: We present a bubble-based PCR testing approach using swab-pooling into lysis buffer. A bubble is a cluster of people who can be periodically tested for SARS-CoV-2 by swab-pooling. A positive test of a pool mandates quarantining each of its members, who are then individually tested while in isolation to identify the carrier(s) for further epidemiological contact tracing. RESULTS: We tested an overall sample of 25 831 individuals, divided into 1273 bubbles, with an average size of 20.3 ± 7.7 swabs/test tube, obtaining for all pools (≤37 swabs/pool) a specificity of 97.5% (lower bound 96.6%) and a sensitivity of 86.3% (lower bound 78.2%) and a post hoc analyzed sensitivity of 94.6% (lower bound 86.7%) and a specificity of 97.2% (lower bound 96.2%) in pools with ≤25 swabs, relative to individual testing. DISCUSSION: This approach offers a significant scale-up in sampling and testing throughput and savings in testing cost, without reducing sensitivity or affecting the standard PCR testing laboratory routine. It can be used in school classes, airplanes, hospitals, military units, and workplaces, and may be applicable to future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Child , Humans , Pandemics , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling
9.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1651889

ABSTRACT

The changing nature of the SARS-CoV-2 pandemic poses unprecedented challenges to the world's health systems. Emerging spike gene variants jeopardize global efforts to produce immunity and reduce morbidity and mortality. These challenges require effective real-time genomic surveillance solutions that the medical community can quickly adopt. The SARS-CoV-2 spike protein mediates host receptor recognition and entry into the cell and is susceptible to generation of variants with increased transmissibility and pathogenicity. The spike protein is the primary target of neutralizing antibodies in COVID-19 patients and the most common antigen for induction of effective vaccine immunity. Tight monitoring of spike protein gene variants is key to mitigating COVID-19 spread and generation of vaccine escape mutants. Currently, SARS-CoV-2 sequencing methods are labor intensive and expensive. When sequence demands are high sequencing resources are quickly exhausted. Consequently, most SARS-CoV-2 strains are sequenced in only a few developed countries and rarely in developing regions. This poses the risk that undetected, dangerous variants will emerge. In this work, we present HiSpike, a method for high-throughput cost effective targeted next generation sequencing of the spike gene. This simple three-step method can be completed in < 30 h, can sequence 10-fold more samples compared to conventional methods and at a fraction of their cost. HiSpike has been validated in Israel, and has identified multiple spike variants from real-time field samples including Alpha, Beta, Delta and the emerging Omicron variants. HiSpike provides affordable sequencing options to help laboratories conserve resources for widespread high-throughput, near real-time monitoring of spike gene variants.

10.
Front Public Health ; 9: 561710, 2021.
Article in English | MEDLINE | ID: covidwho-1630166

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.


Subject(s)
COVID-19 , Sewage , Environmental Monitoring , Humans , RNA, Viral/genetics , SARS-CoV-2
12.
PLoS One ; 16(3): e0243265, 2021.
Article in English | MEDLINE | ID: covidwho-1576038

ABSTRACT

Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) which causes corona virus disease (COVID-19) was first identified in Wuhan, China in December 2019 and has since led to a global pandemic. Importations of SARS-CoV-2 to Israel in late February from multiple countries initiated a rapid outbreak across the country. In this study, SARS-CoV-2 whole genomes were sequenced from 59 imported samples with a recorded country of importation and 101 early circulating samples in February to mid-March 2020 and analyzed to infer clades and mutational patterns with additional sequences identified Israel available in public databases. Recorded importations in February to mid-March, mostly from Europe, led to multiple transmissions in all districts in Israel. Although all SARS-CoV-2 defined clades were imported, clade 20C became the dominating clade in the circulating samples. Identification of novel, frequently altered mutated positions correlating with clade-defining positions provide data for surveillance of this evolving pandemic and spread of specific clades of this virus. SARS-CoV-2 continues to spread and mutate in Israel and across the globe. With economy and travel resuming, surveillance of clades and accumulating mutations is crucial for understanding its evolution and spread patterns and may aid in decision making concerning public health issues.


Subject(s)
COVID-19/pathology , Genetic Variation , Genome, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing , Humans , Israel/epidemiology , Mutation , SARS-CoV-2/isolation & purification
13.
EClinicalMedicine ; 42: 101190, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540602

ABSTRACT

BACKGROUND: SARS-CoV-2 variant Beta (B.1.351) was designated as a Variant of Concern (VoC) after becoming the dominant strain in South Africa and spreading internationally. BNT162b2 showed lower levels of neutralizing antibodies against Beta than against other strains raising concerns about effectiveness of vaccines against infections caused by Beta. We estimated BNT162b2 vaccine effectiveness (VE) against Beta infections in Israel, a country with high vaccine uptake. METHODS: The Ministry of Health (MoH) identified Beta cases through mandatory reporting of SARS-CoV-2 cases and whole genome sequencing (WGS) of specimens from vaccination-breakthrough infections, reinfections, arriving international travelers, and a selection of other infected persons. A cohort analysis was conducted of exposure events of contacts of primary Beta cases. WGS was conducted on available PCR-positive specimens collected from contacts. VE estimates with 95% confidence intervals (CIs) against confirmed and probable Beta infections were determined by comparing infection risk between unvaccinated and fully-vaccinated (≥7 days after the second dose) contacts, and between unvaccinated and partially-vaccinated (<7 days after the second dose) contacts. FINDINGS: MoH identified 310 Beta cases through Jun 27, 2021. During the study period (Dec 11, 2020 - Mar 25, 2021), 164 non-institutionalized primary Beta cases, with 552 contacts aged ≥16 years, were identified. 343/552 (62%) contacts were interviewed and tested. 71/343 (21%) contacts were PCR-positive. WGS was performed on 7/71 (10%) PCR-positive specimens; all were Beta. Among SARS-CoV-2-infected contacts, 48/71 (68%) were symptomatic, 10/71 (14%) hospitalized, and 2/71 (3%) died. Fully-vaccinated VE against confirmed or probable Beta infections was 72% (95% CI -5 - 97%; p=0·04) and against symptomatic confirmed or probable Beta infections was 100% (95% CI 19 - 100%; p=0·01). There was no evidence of protection in partially-vaccinated contacts. INTERPRETATION: In a prospective observational study, two doses of BNT162b2 were effective against confirmed and probable Beta infections. Through the end of June 2021, introductions of Beta did not interrupt control of the pandemic in Israel. FUNDING: Israel Ministry of Health and Pfizer.

14.
J Mol Diagn ; 23(12): 1680-1690, 2021 12.
Article in English | MEDLINE | ID: covidwho-1504354

ABSTRACT

Rapid and sensitive detection of human pathogens, such as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is an urgent and challenging task for clinical laboratories. Currently, the gold standard for SARS-CoV-2-specific RNA is based on quantitative RT-PCR (RT-qPCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer-based hydrolysis probe. Although this method is accurate and specific, it is also time consuming. Here, a new molecular assay is described that combines a highly sensitive magnetic modulation biosensing (MMB) system, rapid thermal cycling, and a modified double-quenched hydrolysis probe. In vitro transcribed SARS-CoV-2 RNA targets spiked in PCR-grade water, were used to show that the calculated limit of detection of the MMB-based molecular assay was 1.6 copies per reaction. Testing 309 RNA extracts from 170 confirmed RT-qPCR SARS-CoV-2-negative individuals (30 of whom were positive for other respiratory viruses) and 139 RT-qPCR SARS-CoV-2-positive patients (CT ≤ 42) resulted in 97.8% sensitivity, 100% specificity, and 0% cross-reactivity. The total turnaround time of the MMB-based assay is 30 minutes, which is three to four times faster than a standard RT-qPCR. By adjusting the primers and the probe set, the platform can be easily adapted to detect most of the pathogens that are currently being diagnosed by RT-qPCR.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Humans , Magnetic Phenomena , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
15.
Microbiol Spectr ; 9(2): e0050621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1455679

ABSTRACT

Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health decision making and to provide valuable data for epidemiological and policy decision making. We developed a multiplex reverse transcriptase quantitative PCR (RT-qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions-one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, one that detects the 242 to 244 deletion, which is specific to variant B.1.351, and the fourth reaction, which identifies the human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants and not with other major known variants. The assay's specificity was tested against a panel of respiratory pathogens (n = 16), showing high specificity toward SC-2 RNA. The assay's sensitivity was assessed using both in vitro transcribed RNA and clinical samples and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole-genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide-circulating SC-2 variants. IMPORTANCE This study describes the design and utilization of a multiplex reverse transcriptase quantitative PCR (RT-qPCR) to identify SARS-COV-2 (SC2) RNA in general and, specifically, to detect whether it is of lineage B.1.1.7 or B.1.351. Implementation of this method in diagnostic and research laboratories worldwide may help the efforts to contain the COVID-19 pandemic. The method can be easily scaled up and be used in high-throughput laboratories, as well as small ones. In addition to immediate help in diagnostic efforts, this method may also help in epidemiological studies focused on the spread of emerging SC-2 lineages.


Subject(s)
COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , High-Throughput Screening Assays/methods , SARS-CoV-2/classification , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Genome, Viral/genetics , Humans , Israel/epidemiology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Whole Genome Sequencing
16.
PLoS One ; 16(8): e0255691, 2021.
Article in English | MEDLINE | ID: covidwho-1344159

ABSTRACT

Accurate and timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is clinically essential, and is required also to monitor confirmed cases aiming to prevent further spread. Positive real-time PCR results at late time points following initial diagnosis may be clinically misleading as this methodology cannot account for the infection capabilities and the existence of whole genome sequences. In this study, 47 serial respiratory samples were tested by Allplex-nCoV test (Seegene), a triplex of three assays targeting the SARS-CoV-2 RdRP, E and N genes and subsequently assessed by next generation sequencing (NGS). COVID19 patients were tested at an early stage of the disease, when all these viral gene targets were positive, and at an advanced stage, when only the N gene target was positive in the Allplex-nCoV test. The corresponding NGS results showed the presence of complete viral genome copies at both early and advanced stages of the disease, although the total number of mapped sequences was lower in samples from advanced disease stages. We conclude that reduced viral transmission at this late disease stage may result from the low quantities of complete viral sequences and not solely from transcription favoring the N gene.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity
17.
Eur J Clin Microbiol Infect Dis ; 40(10): 2199-2206, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1338226

ABSTRACT

BACKGROUND: The current practice of COVID-19 diagnosis worldwide is the use of oro-nasopharyngeal (ONP) swabs. Our study aim was to explore mouthwash (MW) as an alternative diagnostic method, in light of the disadvantages of ONP swabs. METHODS: COVID-19 outpatients molecular-confirmed by ONP swab were repeatedly examined with ONP swab and MW with normal saline (0.9%). Other types of fluids were compared to normal saline. The Cq values obtained with each method were compared. RESULTS: Among 137 pairs of ONP swabs and MW samples, 84.6% (116/137) of ONP swabs were positive by at least one of the genes (N, E, R). However MW detected 70.8% (97/137) of samples as positive, which means 83.6% (97/116) out of positive ONP swabs, missing mainly Cq value > 30. In both methods, the N gene was the most sensitive one. Therefore, MW samples targeting N gene, which was positive in 95/137 (69.3%), are comparable to ONP swabs targeting E and R genes which gave equal results-95/137 (69.3%) and 90/137 (65.7%), respectively. Comparing saline MW to distilled water gave equal results, while commercial mouth-rinsing solutions were less sensitive. CONCLUSIONS: MW with normal saline, especially when tested by N gene, can effectively detect COVID-19 patients. Furthermore, this method was not inferior when compared to R and E genes of ONP swabs, which are common targets in many laboratories around the world.


Subject(s)
COVID-19/diagnosis , Mouthwashes/analysis , SARS-CoV-2/isolation & purification , Saliva/virology , Adult , Aged , COVID-19/virology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics , Saliva/chemistry , Young Adult
18.
Chemosphere ; 283: 131194, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1272331

ABSTRACT

The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (Ì´ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.


Subject(s)
COVID-19 , Sewage , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater
19.
Sci Total Environ ; 789: 148002, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1240614

ABSTRACT

Investigation of SARS-CoV-2 spread and identification of variants in sewers has been demonstrated to accurately detect prevalence of viral strains and is advantageous to clinical sampling in population catchment size. Herein, we utilized an established nationwide system of wastewater sampling and viral concentration approaches to perform large-scale surveillance of SARS-CoV-2 variants in nine different locations across Israel that were sampled from August 2020 to February 2021 and sequenced (n = 58). Viral sequences obtained from the wastewater samples had high coverages of the genome, and mutation analyses successfully identified the penetration of the B.1.1.7 variant into Israel in December 2020 in the central and north regions, and its spread into additional regions in January and February 2021, corresponding with clinical sampling results. Moreover, the wastewater analysis identified the B.1.1.7 variant in December 2020 in regions in which non-sufficient clinical sampling was available. Other variants of concern examined, including P.1 (Brazil/Manaus), B.1.429 (USA/California), B.1.526 (USA/New York), A.23.1 (Uganda) and B.1.525 (Unknown origin), did not show consistently elevated frequencies. This study exemplifies that surveillance by sewage is a robust approach which allows to monitor the diversity of SARS-CoV-2 strains circulating in the community. Most importantly, this approach can pre-identify the emergence of epidemiologically or clinically relevant mutations/variants, aiding in public health decision making.

20.
PLoS One ; 16(3): e0249149, 2021.
Article in English | MEDLINE | ID: covidwho-1158246

ABSTRACT

Conducting numerous, rapid, and reliable PCR tests for SARS-CoV-2 is essential for our ability to monitor and control the current COVID-19 pandemic. Here, we tested the sensitivity and efficiency of SARS-CoV-2 detection in clinical samples collected directly into a mix of lysis buffer and RNA preservative, thus inactivating the virus immediately after sampling. We tested 79 COVID-19 patients and 20 healthy controls. We collected two samples (nasopharyngeal swabs) from each participant: one swab was inserted into a test tube with Viral Transport Medium (VTM), following the standard guideline used as the recommended method for sample collection; the other swab was inserted into a lysis buffer supplemented with nucleic acid stabilization mix (coined NSLB). We found that RT-qPCR tests of patients were significantly more sensitive with NSLB sampling, reaching detection threshold 2.1±0.6 (Mean±SE) PCR cycles earlier then VTM samples from the same patient. We show that this improvement is most likely since NSLB samples are not diluted in lysis buffer before RNA extraction. Re-extracting RNA from NSLB samples after 72 hours at room temperature did not affect the sensitivity of detection, demonstrating that NSLB allows for long periods of sample preservation without special cooling equipment. We also show that swirling the swab in NSLB and discarding it did not reduce sensitivity compared to retaining the swab in the tube, thus allowing improved automation of COVID-19 tests. Overall, we show that using NSLB instead of VTM can improve the sensitivity, safety, and rapidity of COVID-19 tests at a time most needed.


Subject(s)
Limit of Detection , SARS-CoV-2/isolation & purification , Safety , Specimen Handling/methods , Adult , Buffers , Female , Humans , Male , Pandemics , Polymerase Chain Reaction , SARS-CoV-2/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL